2,465 research outputs found

    Quantum State Discrimination with General Figures of Merit

    Full text link
    We solve the problem of quantum state discrimination with "general (symmetric) figures of merit" for an even number of symmetric quantum bits with use of the no-signaling principle. It turns out that conditional probability has the same form for any figure of merit. Optimal measurement and corresponding conditional probability are the same for any monotonous figure of merit.Comment: 5 pages, 2 figure

    Semi-device-independent bounds on entanglement

    Full text link
    Detection and quantification of entanglement in quantum resources are two key steps in the implementation of various quantum-information processing tasks. Here, we show that Bell-type inequalities are not only useful in verifying the presence of entanglement but can also be used to bound the entanglement of the underlying physical system. Our main tool consists of a family of Clauser-Horne-like Bell inequalities that cannot be violated maximally by any finite-dimensional maximally entangled state. Using these inequalities, we demonstrate the explicit construction of both lower and upper bounds on the concurrence for two-qubit states. The fact that these bounds arise from Bell-type inequalities also allows them to be obtained in a semi-device-independent manner, that is, with assumption of the dimension of the Hilbert space but without resorting to any knowledge of the actual measurements being performed on the individual subsystems.Comment: 8 pages, 2 figures (published version). Note 1: Title changed to distinguish our approach from the standard device-independent scenario where no assumption on the Hilbert space dimension is made. Note 2: This paper contains explicit examples of more nonlocality with less entanglement in the simplest CH-like scenario (see also arXiv:1011.5206 by Vidick and Wehner for related results
    • …
    corecore